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DERIVATION OF FORMULAS FOR ROOT-MEAN-SQUARE ERRORS
IN LOCATION, ORIENTATION, AND SHAPE IN TRIANGULATION
SOLUTION OF AN ELONGATED OBJECT IN SPACE

By Sheila Ann T, Long
Langley Research Center

SUMMARY

Formulas are derived for the root-mean-square (rms) displacement, slope, and
curvature errors in an azimuth-elevation image trace of an elongated object in space,
as functions of the number and spacing of the input data points and the rms elevation
error in the individual input data points from a single observation station. Also, formulas
are derived for the total rms displacement, slope, and curvature error vectors in the tri-
angulation solution of an elongated object in space due to the rms displacement, slope,
and curvature errors, respectively, in the azimuth-elevation image traces from different
observation stations,

INTRCDUCTION

The purpose of this paper is to relate the errors in location, orientation, and shape
in the triangulation solution of an elongated object in space to the rms elevation errors in
the individual input data points. An elongated object, in this paper, is defined as an entity
whose lateral dimensions are so small in comparison to its length that it can be regarded
as a curved line. One example of such an entity in space is an ionization trail resulting
from an object entering the upper atmosphere. A second example is an ionized cloud
released in space, such as the barium ion cloud released in the magnetosphere on
September 21, 1971 (ref. 1).

In reference 2 a formula is derived for the total distance (i.e., displacement) error
vector, which specifies the error in location, in the triangulation solution of a smoke trail
in space. For curved lines in space, however, one also needs to specify the errors in
orientation and shape. For these, formulas are needed for the total slepe and curvature
error vectors, respectively. In this paper the total rms slope and curvature, as well as
displacement, error vectors are determined,

This paper is composed of two main parts, In the first part a smoothed azimuth-
elevation image trace through the azimuth-elevation input data points from a single



observation station is obtained by a least-squares procedure. (The input data points are
taken from photographs of the elongated object in space and are initially in terms of right
ascension and declination coordinates, A coordinate transformation is then made from
right ascension and declination to azimuth and elevation.) Formulas are derived relating
the rms displacement, slope, and curvature errors in this smoocthed azimuth-elevation
image trace to the rms elevation error in the individual input data points.

In the second part of this paper, the errors in the triangulation solution of an elon-
gated object in space are considered. These errors are manifestations of triangulating
on azimuth-elevation image traces (and, consequently, input data points) from several
observation stations that contain errors. If the input displacement, slope, and curvature
errors in the azimuth-elevation image traces are assumed to be small, then one can
assume that they give rise to the total rms displacement, slope, and curvature error vec-
tors, respectively, in the triangulation solution. Formulas are derived relating the total
rms displacement, slope, and curvature error vectors in the triangulation solution of an
elongated object in space to the rms displacement, slope, and curvature errors, respec-
tively, in the azimuth-elevation image traces.

The total rms displacement, slope, and curvature error vectors are useful for
determining the relative merits of two or more different triangulation procedures appli-
cable to elongated objects in space. They are also useful for determining the effect of
various experimental parameters - such as the number and relative location of the obser-
vation stations, the spacing of the input data points along the azimuth-elevation image
traces, etc. —~ on the triangulation solution of an elongated object in space.

SYMBOLS
Aﬁ,B%,C{fl coefficients of second-degree curve (n~-1)¥, nH (ne1)

aﬁ,b%,c% random curvature, slope, and displacement errors in segment (n—‘l)'u‘, '
n, (n+1)M

dl‘l‘&,dﬁ’N,dﬁN,dzN total, east-west, radial, and north-south output displacement errors
in solution curve at point N, due to error el%l

dyifI displacement error in curve (n-I)”, n*u, (n+1)* at vﬁ'= 0
—
dﬁr total oufput displacement error vector in solution curve at point N, due

to error e%



input displacement error in segment (n-1)*, ¥, (n+1)?

distance between points n+1 and (n+U)" in input slope error
determination

distance between points n and n" in input curvature error
determination

coordinates along ordinate axis (i.e., elevation) of individual input data
points

unit vectors centered at point N in directions of increasing east longitude,
geocentric radius, and geocentric latitude

quantity which is direetly proportional to number of input data points
index for sequential labeling of individual input data points

indices for sequential labeling of points along curves S and SH
indices for sequential labeling of points along traces s and st

input radius of curvature error in segment (n—l)“, n“, (n+1 ¥
reference and triangulation solution curves of elongated object in space
azimuth~elevation error-free and image traces from station u

total number of input data points

quantities depending on number of input data points

> —
unit vectors in directions of vectors N"N+1 and N-1,NM

. 5 I,
unit vectors in directions of vectors N,N+1 and N,(N+l)“

coordinates along abscissa axis E.e., azimuth x cos(elevationﬂ
of individual input data points



X,y,z

e

OneO18 92N

continuous variables along abscigsa E.e., azimuth x cos(elevationD and
ordinate (i.e., elevation) axes of second-degree curve {n-l)“, n‘u,
(n+1)¥

rectangular coordinate system with origin at center of earth, x axis in
equatorial plane toward Greenwich meridian, z axis toward north,
and y axis to form right-hand orthogonal triad

input slope error in segment (n-l)“‘, n“, (n+1)M

total, parallel, and perpendicular slope errors in solution curve at point N,
due to error O‘II;LI ’

spacing between points n and n+l1

m

spacing between coordinates uy..,

deviations associated with individaal input data points
vertical displacement of curve (n-1)%, n¥, (m+1)* at vr": =0
curvature of curve (n-1)¥, nH, (m+1)F at vg =0

total, parallel, and perpendicular rms curvature errors in solution curve
at point N

total, parallel, and perpendicular curvature errors, per unit input curva-
ture error, in solution curve at point N

input curvature error in segment (n—l)“‘, n“, (n+1)H

total, parallel, and perpendicular output curvature errors in solution curve
at point N, due to error L{G

total output curvature error vector in solution curve at point N, due to
error Lg‘r

east longitude of points N and NM



M particular observation station

’EN,E AN = pN’E ¢N total, east-west, radial, and north-south rms displacement errors
in solution curve at point N

‘EN"ERN’ pN"S &N total, east-west, radial, and north-south displacement errors, per
unit input displacement error, in solution curve at point N

pN’pI%I geocentric radius of points N and NM

OIL\LT - rms elevation error in individual input data points

OJXN’OJ]‘;N’ oJéN rms errors in A“ BY:, and Cﬁ

dgN,oﬁN’ oﬁN' rmg curvature, slope, and displacement errors in segment (n-l)”,
ot (n+)H

qSN,qb{;"I geocentric latitude of points N and N

WI‘L\LT slope of curve (n-1)"% n", (n+s1)* at vﬁ =0

Qo total, parallel, and perpendicular rms slope errors in solution curve at
point N

wM’wiLN’wELN total, pé.rallel, and perpendicular slope errors, per unit input slope error,

in solution curve at point N
ANALYSIS

Relationship Between rms Displacement, Slope, and Curvature
Errors in an Azimuth-Elevation Image Trace From a
Smgle Observation Station and rms Elevation
Error in Individual 'Input Data Points

In figure 1 an azimuth-elevation plot from the observation station | of an image
trace s" and an error-free trace s is shown. An azimuth-elevation image trace
approximates the actual photographic image of an elongated object in space. An azimuth-
elevation error-free trace is the trace that would result if no errors whatsoever occurred



from the data aequisition system and the data reduction procedure., The image trace seg-
ment (n-1)%, n, (n+1)" differs from the error-free trace segment n-1, n, n+l in
location (i.e., displacement), orientation (i.e., slope) as defined by the first-order deriva-
tive, and shape as defined by the second and higher order derivatives, In this paper the
highest order derivative considered will be the second; hence, shape will be defined by the
single parameter curvature.

For convenience the azimuth-elevation input data points within the segment are
selected so that they are equally-spaced along the Elzimuth X cos(elevaj:ionﬂ coordinate
axis. The segments are sufficiently small so that they can be accurately described by a
second-degree curve. Each second-degree curve is obtained by a least-squares procedure.
The segment (n-1)%, n¥, (n+1)* centered about the point n¥, of the azimuth-elevation
image trace s is one such resulting second-degree curve,

The coordinates uﬁ‘m @.e., aZimuth = cos(elevajzionﬂ and hg'm (i.e., elevation),
where m=-j, -j+1, ..., -1, 0, 1, ..., j-1, j, of the individual input data points in the interval
which gives rise to the second-degree curve (n-1)¥, n*, (n+1)* are shown in figure 2.

The deviations eﬁm associated with these individual input data points are

2
TN Lop -~ :
“am = AN(unm) * BNYhm * ON ~ Pom (1)

The coefficients A#I, B#I, and CI%I are to be determined. The sum of the squares of
the deviations is

! MR bV b :
m;—f_j(enm) = mz—l—j AN(unm) + Byupm + ON - Moy (2)

The following is a generalization of the procedure set forth in reference 3 for the
best fit of a straight line to experimental data., In this analysis the best fit of a second-

2
degree curve to the data of interest is the one which minimizes Z (e“ ) . Taking the

nm
m=-j
first partial derivatives of equation (2) with respect to AI!fI’ B{é, and Cﬁr, respectively,

and then setting each of these three resulting expressions equal to Zero, one arrives at

] 4 j 3 2 J 2
m i oS o TS TR AT
Ay L (unm) +By L .(unm) +Cy ), ,(unm) - L : hnm(unm) =0 3
m=-] m==] m=-j m=-j



3 ] ) i
N - I O BEY - i N @)

m"'—'-j m:—j mz—j m=-}
m 2 L m j v
AN Z ( ) + By Z_unm+pCN' z.hnm:O ®)
=] m=-] m=-j

The quantity p is the total number of input data points in the interval of interest.
p=2j+1 (6)

Without loss of generality the 2j + 1 equally-spaced coordinates uﬁ‘m can be centered
on a local coordinate origin (i.e., nO = O) Then,

2()
L fh) -0
L)'

The quantity 9 isthe spacing between the coordinates ut of the individual input data

nm
points, The quantities Py and P45 which depend on the number of input data points in
the interval of interegt, are

(11)
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Substituting equations (7) to (10) into equations (3) to (5) where appropriate, one finds that
equations (3) to (5), respectively, become

]

‘ 2
4,4 2oL _ Bmoofe
pydotal s pyoPct = T _hnm(unm) (13)
m=-j
2 j moop
P8 By = ), hiub (14)
m=-j
5 j
pgd Ag + pcl‘{'T = mz-j hﬁm (15)

after rearranging, Solving the three simultaneous equations (13), (14), and (15), one

: e Lo gl
obtains the coefficients AN’ BN’ and CN.

] 2 5
3 W } [
Al m;_-LE)(unm) p25]hnm

(16)
N 64(pp4 - p})
Lo
" mz—j YymPnm
Bl - > (17)
4] p2
J " "
ll mZ-3 P40 - Py (unm )Jhnm
cl - : - (18)
6% (ppy - 05 )

One can assume that the individual input data points are uncorrelated. If the rms
error in the individual coordinates kﬁm is denoted by o&, then the rms error Oﬁ‘N
in AlIL\LI is obtained from the following:



using equation (16)

i (%‘3)2&2(?464) - 2pp,52 (py5?) +p§54(p)]

2
8 (pp4 - p%)

4]

using equations (10), (8), and {6)

(%) >
) 64(pp4 - p2

Hence, the rms error CﬁN in Ag'r is

BNy p |2 (19)
AN~ <2 2
b (pp4 - pz)

3 3 1 lu‘ U' du OJLL :
Similarly, the rms errors in By and CN, denoted by BN and oN respectively,
are

N 1
BN =G —12 (20)
(P2)
by 1/2
B gt
Ty = —_— {21)
CN N(pp4 - p%)

From equations (19), {20}, and (21}, using equations {6), (11), and (12}, one notes
that, for large j,

2
# varies approximately as -1~ ——-1—-
OAN pp Y 53 /2



O}ELBN varies approximately as (l‘ 1
/

\"J

c‘éN varies approximately as

()12

The quantity & 1is the spacing between the coordinates uﬂ'm of the individual input data
points, and the quantity j is directly proportional to the number of input data points in

the interval of interest.

The equation for the second-degree curve (n—l)'u, n‘u, (n+1)”, centered about the
point nF, is

B Al
wn—A

N

2
(vf_f) BNV + C“’ (22)

where vl*li and wF, shown in figure 2, are the continuous variables along the abscissa

n,
E.e., azimuth X cos(elevationD and ordinate (i.e., elevation)} axes, respectively. The ver-
tical displacement &i; of this curve, at vh =0 (i.e., at the point nb), is

The vertical displacement error ci‘C‘ﬁT is
Ho_ qek
dCN = dCN

The normal displacement error dvlij’I in the curve (n-l)“, np‘, (n+1)'u’, at vﬁ': 0, is

awH
dvlt = det cos tan~!l 1
N N dv?
n s
vn_O

= acH cos(tan B‘u)

1L
B dCN

o]

10



Therefore, the rms displacement error o‘gN in the azimuth-elevation image trace
segment (n-1)%, n#, (n+1)", as related to the rms elevation error o'IL& in the individual
input data points in the interval of interest, is

b
e

where O%N is given by equation (21).

(23)

The slope W!flq of the second-degree curve (n—l)‘u, n'u, (n+1)'u, at vﬁ =0, is

dwh
Uo_ -1 1n
QJ/N - ta.rl T ——

LL
dvn teg
n

= -1 g
= tan BN
The slope error d"bkl is

v
d,’p#{ = _dli\f__z

1+ (Bl‘L\LI)
Therefore, the rms slope error UEN in the azimuth-elevation image trace segment
(n-1)*, n", (n+1)", as related to the rms elevation error o'Ll\L] in the individual input
data points in the interval of interest, is

Op.
opg = (24)

2
n
1+ (BN)
where o}é is given by equation (20},

The curvature n{\LI of the second-degree curve (n-1)*, nF, (n+1)* at vg =0,
is

11



e

The slope error an% is

9 oAl
dnk = 2 24N dak . 2 28N dBY
N Al n3/2p N Bl 53/2 ¢ N
N 1+ (B{:‘I) N 1+ (BI%)
M JTENTg.Y)
2dAk 6ALBLABL:

IS N

Therefore, the rms curvature error OiafN in the azimuth-elevation image trace segment
(n-1)", n*, (n+1) as related to the rms elevation error o{& in the individual input data

points in the interval of interest, is

1/2
UKN)z 36(A§T)2 (E’#I)z (‘%N )2 (25)

OaN = 4( R 55
PR N Y 0

where GiN and O%N are given by equations {19) and (20}, respectively.

12



Relationship Between rms Displacement, Slope, and Curvature Errors
in the Triangulation Solution of an Elongated Object in Space and
rms Displacement, Slope, and Curvature Errors, Respectively,
in Azimuth-Elevation Image Traces

Separation of errors.- The output displacement, slope, and curvature errors in the
triangulation solution of an elongated object in space are assumed to be small and linearly

related to the input displacement, slope, and curvature errors, respectively, in the
azimuth-elevation image traces. A linear error analysis model will be derived using
perturbations of triangulation solutions to establish the required linear relationships.

The problem reduces to defining the deviation of one curved line in space from a
second curved line in its immediate neighborhood. The first curved line is called the ref-
erence curve and is denoted by 8. The reference curve 8, shown in figure 3, is assumed
to have the same position and form as the elongated object in space of interest. The
points along the curve S are sequentially labeled ..., N-1, N, N+1, .., . The geocentric
latitude, east longitude, and geocentric radius of the point N on the curve S are
dencted by ng, AN and N respectively. In computations one should space the points
along the curve S at small, equal intervals in geocentric latitude, east longitude, or
geocentric radius, depending on the position and form of the elongated object in space of
interest. Also, the points along the curve S should be spaced so that the distances
between the successive points are small compared to the geocentric radii of the points,
Hence, the arc segments between the successive points along the curve S can be
regarded as straight-line segments,

From the curve S, one can derive the azimuth-elevation error-free trace from
each of the observation stations of interest. The azimuth-elevation error-free trace s
from the observation station p is shown in figure 4. The points n-1, n, and n+l
along the trace s correspond tothe points N-1, N, and N+1, respectively, along the
curve S, '

The input displacement, slope, and curvature errors are assumed to be small.
Hence, one can assume that they give rise to the total rms displacement, slope, and curva-
ture error vectors, respectively. In other words, the total rms displacement, slope, and
curvature error vectors are assumed to be effectively decoupled and, consequently, can
be examined separately.

One notes that configurations of one, two, and three points define zero, first, and
second order derivatives, respectively, if the derivatives are expressed in finite difference
notation. This fact will be used in this part of the analysis. In other words, configurations
of one, two, and three points will be used in the determinations of the total rms displace-
ment, slope, and curvature error vectors, respectively.

13



The general procedure for determining the total rms displacement error vector,
for instance, will be as follows: Introduce an input displacement error into the error-
free trace s from station u to form an image trace sH; triangulate, using the
trace sH from station u and the error-free traces from the remaining stations, to
obtain a triangulation solution curve St compare the curve SH to the curve $ to find
the total output displacement error vector due to the input displacement error introduced
at the station [ take the ratio of the output to the input displacement errors; and com-
pute the rms sum of this ratio over all of the stations. Analogous procedures will also
be carried out with regard to the total rms slope and curvature error vectors.

Displacement errors.- The determination of the total rms displacement error vector
will be considered first. For this the points n-1, n, and n+l on the azimuth-elevation
error-free trace s from the observation station p are displaced through e{fr radians
along the normals to the trace s at the points n-1, n, and n+l, respectively, to form
the points (n-1)%, nM, and (n+1)", respectively, as shown in figure 4. The segment
(n-1)¥, nH, (n+1)¥, extended, is the azimuth-elevation image trace sH from the chser-
vation station p. The quantity eI'LfI is the input displacement error in the azimuth-

elevation image trace segment (n-1)%, n* (+1)* from the observation station p.

The triangulation solution of the elongated object in space is then calculated, using
for input data the points along the azimuth-elevation image trace st from the observa-
tion station g in conjunction with the peints along the azimuth-~elevation error-free
traces from all of the remaining observation stations. Three appropriate triangulation
procedures for a curved line in space are described in references 4, 5, and 6.

The resulting triangulation solution curve of the elongated object in space is
denoted by S* and is shown in figure 3. The points along the curve S* are spaced
according to the same scheme as that used for spacing the points along the curve 8,
They are spaced at the same small, equal intervals in geocentric latitude, east longitude,
or geocentric radius that were used for the spacing of the points along the curve S, The
point on the curve S* which has the same geocentric latitude, east longitude, or geocen-
tric radius as the point N on the curve § is denoted by NM. The geocentric latitude,
east longitude, and geocentric radius of the point N are denoted by ¢k, M, and

pg'r, respectively. (One should notice that no correspondence exists between the points

NH and nH, unlike the situation for the points N and n.)

14
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The vector N,N+1, from the point N to the point N+1, shown in figure 3, is

— .
N,N+1 = PN €08 G sin(AN+1 - RN)i)\

+pN+1[sin Bpyp1 €OS By - €OS ¢y g Sin Gy cos (AN+1 - ANﬂE(f)
+ pN+1Ezos iy, COS By cos(AN+1 - AN) +8in gy, ¢ sin @ - PN ip (26)

where El’ §¢, and 1_ are the unit vectors centered at the point N in the directions of
increasing east longitude, geocentric latitude, and geocentric radius, respectively, where
c;:\N, A and py are the geocentric latitude, east longitude, and geocentric radius,
respectively, of the point N, and where - PN+l M1 and PNy 2re the geocentric lat-
itude, eaﬁst longitude, and geocentric radius, respectively, of the point N+1. _T_he;~ unit
vector ty, shown in figure 3, which is in the same direction as the vector N,N+1, is

_—

ty = N,N+1_ (27)
|N,N+1|

—

The vector N,N¥, from the point N to the point N'u', in figure §, is

> A
N,NH = pﬁ’r cos ¢IIL\LI sin (7\1% ~ RN)ih

+ pﬁ{sin q&% cos ng « COS c;h; sin ¢N Ccos (7\1%I - )LNB {gb
+ pﬁE:os d#] cos gy oS (hl‘fl - AN) + sin q% sin qbbﬂ - Py i (28)

where ¢1§, e , and pI'LfI are the geocentric latitude, east longitude, and geocentric
radius, respectively, of the point NH,
—>
The vector dﬁ, shown in figure 3, which is drawn fromand normal to the curve 8§,

at the point N, to the curve S“‘, very closely appr_cl:;imates the shortest vector distance

from the curve S to the point N*, The vector d#l is the total output displacement

error vector in the triangulation solution curve at the point N, due to the input displace-

ment error e{fl.

15



From figure 3 one sees that

A~

ak = NNM -\ NNH L ty {29)

o -5 [ 1)

§E;Jstitution of equations (27) and (28) into equation {(29) leads to an equation for the vector

dﬁ in the following form:

—>
Ho_alh 2 gt % L al 3
dN"d)\Nlh+dqu1¢+de1p (30}

where d‘;N, dgN, and dgN are the east-west (i.e., in the direction of increasing east
longitude), north-south (i.e., in the direction of increasing geocentric latitude), and radial
(i.e., in the direction of increasing geocentric radius) output displacement errors in the
solution curve at the point N, due to the input displacement error eﬁ. The total output
displacement error dI%T in the solufion curve at the point N, due to the input displace-
ment error eﬁ, is

1/2
af = [(dF;N)Z . (dg;N)?‘ . (dgN)zi] (31)

Hence, the east-west, north-south, radial, and total digplacement errors, denoted by
’g‘f;N, %N’ &gN, and E%, respectively, per unit input displacement error, in the solution
curve at the point N are

p _ G
'ERN = eT (32)
N
v d“@N
v (33)
N
b %N
N
d“‘
b N
N=E (35)
N

16



Now, the east-west displacement error g , for instance, in the solution curve at
the point N is due only to the unit input displacement error in the azimuth-elevation
image trace segment (n-1)*, n*, (n+1)® from the observation station . I a random
normal displacement error, cI'Lj-, with zero mean exists in the segment (n-l)“, n“,
(n+1)"*  from the station u, then the east-west displacement error in the solution curve
at the point N, due to the random displacement error c{&, 18 (E';‘J‘N CI’;LI) Hence, the
east-west rms displacement error EAN in the solution curve at the point N, due to the
random displacement error CK‘I in the azimuth-elevation image trace segment (n-l)“,

n”‘, (r1+1)'LL from each of the respective observation stations, is
1/2

)
AN=(§§%V%) (36)

il

The bar denotes the mean value, and the summation is over the total number of observa-
tion stations., Because the random displacement errors CI%T at the various observation
stations are uncorrelated, equation (36) becomes

_~1l/2
2

- |3 Ei) (o) @0

2
If one assumes that the mean-square random displacement error (cl%) in the azimuth-
elevation image trace segment (n—l)”‘, nf“", (n+1)* from each respective observation

2
station is equal to (c'léN) radians [the mean-square displacement error in the azimuth-
elevation image trace segment (n-1)% n", (n+1)* as given by eguation (233, then equa-
tion (37) becomes

1/2
() &

111

ng@%)

Therefore, equation (38) is the formula for the east-west rms displacement error in the
triangulation solution curve at the point N, as related to the rms displacement errors
o*'éN in the azimuth-elevation image traces. Similarly, the north-south, radial, and
total rms displacement errors, denoted by E¢)N’ E‘pN’ and EN’ respectively, in the
triangulation solution curve at the point N, as related to the rms displacement errors
o'gN in the azimuth-elevation image traces, are

17



— rw {1 \zf i \511/2

“on ™ | Con) (%) | (3
2, (A2

ZoN = [E ('EDN) (oﬁN :l (40)

1/2
=316 )

Slope errors.- In this section the relationship between the total rms slope error
vector in the triangulation solution of an elongated object in space and the rms slope
errors in the azimuth-elevation image traces is considered. For this determination a
triangulation solufion of the elongated cbject in space is calculated, using for input data
the points along the azimuth-elevation image trace segment n, (n+1)¥, extended,
denoted by sH, and shown in figure 5, from the observation station u in conjunction
with the points along the azimuth-elevation error-free traces from all of the remaining
observation stations. One notes that the segment n, (n+1)“ has one extremity on the
trace s. This is permissible, without loss of generality, because the total rms slope
error vector has been assumed to be effectively decoupled from the total rms displace-
ment error vector., {The point (n_+1)“ in fig. 5 is not necessarily the same as the
point (n+1)™ in fig. 4.) The resulting triangulation solution curve S" of the elongated
object in space extends through the segment N, (N+1)*, as shown in figure 6. (There is
no correspondence between the point (N+1)" in fig. 6 and the point (n+1)* in fig. 5 and
the point (N+1)" in fig. 6 is not the same as the point (N+1)" in fig. 3.)

The angle a{f{, shown in figure 5, between the segment n, n+l and the segment
n, (n+1)" is the input slope error in the azimuth-elevation image trace segment (n-l)'U‘,
o, (n+1)* from the observation station t. The angle 'BI%T’ shown in figure 6, between
the segment N, N+l and the segment N, (N+1)* is the total output siope error in the
triangulation solution curve at the point N, due to the input slope error ai‘}. The first
step in this section is to determine the equations for the total output slope error ’QIPCT

and the input slope error Q#J'

18
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The vector from the point N to the point (N+1)M, in figure 6, is N,(N+1)M,

L
i TR TR
N,(N+1 ) = PNl €08 Oy, Sin (?LN+1 }\N)lh

+ DI%+1E’in gﬂ;“_l cos qu - COS gbﬁ”l sin (IJN COS(RKIJFI - )LN)j] ic,‘b

+ p§+1E:os ¢§+1 cos ng caos (AIIL\LI-FI - ?‘N) + Sin q‘fﬁ 1 sin qibﬂ pN p
(42)

where qbﬁr 12 N+1’ and p{\LT 1 are the geocentric latitude, east longitude, and geocen-
tric radius, respectively, of the point (N+1)“‘. The unit vector tN’ shown in figure 6,
————--'}

which is in the same direction as the vector N,(N+1)¥, is

L

- N,(N+1

ti} = —._.’_..-(—:);' (43)
‘N,(N+1)“"

Alsgo from figure 6 one sees that the total output slope error B% in the solution
curve at the point N, due to the input slope error af, is

,81*\1’1 = sin'l‘EN X JE?I ' (44)

where the unit vector :EN is given by equation (27). Now, the unit vector that is normal

~

tyy =<1

|tN X ipl
lane, here, is the plane passing through the earth's center and tangent to
the reference curve § af the point N. The tolal oufpui siope error ﬁ‘“’ can be
resolved into two components, the parallel output slope error ﬁlN (para.llel to the local
vertical tangent plane) and the perpendicular output slope error B?.N {perpendicular to
the local vertical tangent plane), From figure 6 one observes that, for small slope
errors, the perpendicular output slope error B';N and the parallel cutput slope error
BPILN in the solution curve at the point N, due to the input slope error aﬁ, are

to the local vertical tangent plane is which is seen from figure 6. The local

vertical tangent

e
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From figure 5 one sees that the input slope error a{ii In the azimuth-elevation

image trace segment (n-l)“, np‘, (n+1)"* from the observation station L is

fnU-
a'u“=tan‘1 N

N (47)

(as)

The quantity (AS)I'%T is the spacing in radians between the points n and n+l, and the
quantity fl'[fr is the distance in radians between the points n+l and (n+1)% (In compu-
tations one may set the quantity f{\LT equal to the input displacement error eN.) Hence,
the parallel, perpendicular, and total slope errors, denoted by w"fN, wg'N, and wl%’
respectively, per unit input slope error, in the solution curve at the point N are

A
wh = 1_51 (48)
o
N
By
o _ 2N
Whpy = “a“ (49)
N
m
N
wg‘r = — (50)

Q
2T

Now, the parallel slope error wi"N, for instance, in the solution curve at the
point N is due only to the unit input slope error in the azimuth-elevation image trace
segment (n-1)", n*, (n+1)* from the observation station 1. If a random slope
error bI%I with zero mean exists in the segment (n-1)%, n“, (n+1)* from the sta-
tion iy then the parallel slope error in the solution curve at the point N, due to the ran-
dom slope error bﬁ, is (w"fN bl'% . The random slope errors at the various observation
stations, like the random displacement errors, are uncorrelated. If one assumes that the
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2
mean-square random slope error (b{é) in the azimuth-elevation image trace segment

(n-1)", a* (n+1)* from each respective observation station is equal to (cng) radians
(the mean-square slope error in the azimuth-elevation image trace segment (n-1)¥, n“,
{n+1)* as given by eq. (24)), then ‘

1/2

iy = [Z (‘”TN) ’ (UﬁN) 2 | | (51)

m

is the formula for the parallel rms slope error in the triangulation solution curve at the
point N, as related to the rms slope errors GﬁN in the azimuth-elevation image traces.
Similarly, the perpendicular and total slope errors, denoted by Qon and Q24 respec-
tively, in the triangulation solution curve at the point N, as related to the rms slope
errors UgN in the azimuth-elevation image traces, are

_ /2
Uon = %(“’ELN) (UgN) (52)
e 1/2 |
= | D (k) o) 9

Curvature errors.- In this seetion the relationship between the total rms curvature

error vector in the triangulation solution of an elongated object in space and the rms cur-
vature errors in the azimuth-elevation image traces is considered, For this determina-
tion a triangulation solution of the elongated object in space is caleulated, using for input
data the points along the azimuth-elevation image trace segment n-1, n-u, n+l, extended,
denoted-by s*, and shown in figure 7, from the observation station p in conjunction with
the points along the azimuth-elevation error-free traces from all of the remaining obser-
vation stations. One notes that the segment n-1, n*, n+l has both of its extremities
on the trace s, This is permissible, without loss of generality, because the total rms
curvature error vector has heen assumed to be effectively decoupled from both the total
rms displacement and slope error vectors. (The point n# in fig. 7 is not necessarily the
same as the point n* in fig, 4.} The reSulting triangulaiion solution curve S¥ of the
elongated object in space extends through the segment N-1, NH N+1, as shown in fig-
ure §. (No correspondence exists between the point N* in fig. 8 and the point n* in
fig. 7, and the point NH in fig, 8 is not the same as the point N* in fig. 3.)
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The input curvature error L{fr (i.e., the reciprocal of the input radius of curvature
error r{fr) in the azimuth-elevation image trace segment (n—l)-u, n-“, (s from the

observation station p is shown in figure 7. The total output curvature error vector

—
K“L

N in the triangulation solution curve at the point N, due to the input curvature error

L #I’ is shown in figure 8. The first step in this section is to determine the eguations for
—>
the total output curvature error vector K{'\LT and the input curvature error LI‘L&.

_—
The vector N“,N+1 , from the point N* to the point N+1, in figure 8, is

m =[;3N+1 oS ¢y 4 Sm(ll\h-l - RN) - p#&cos qﬂé sin(hﬁ - ANﬂih
+ { Pypy] SIN G,y €08 ¢ - COS Pyy,q Sin @y cos (AN+1 - ?\Nﬂ
- p#&[sin qﬂ’;l cos‘qu - COS q#, sin qu cos (hl'lfr - AN] iqb
+ {0N+1E;in Bo1 SIR G +COS G 4 COS P cos (XN+1 - }‘Nﬂ

- plﬂ‘}[sin t;bkr sin ¢y + cos qﬁK‘I cos ¢y €08 (hlﬁtl - ANB Ep (54)

The unit vector TK‘I, shown in figure 8, which is in the same direction as the vector

NN+, is
TR
T NY,N+1
T{& = "_—__‘:+‘ (55)
|N%Nu|
——p

The vector N—l,N‘u, from the point N-1 to the point N in figure 8, is

r
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N-1,N" [ cos ¢fi sin(; - M) * Pyy_q 005 Byy_q SIn (A - AN_lﬂi‘)\
+ {:@[sm ¢ cos g ~ cos ¢ sin gy cos (A - xN)-J
- PN- [‘:Os‘pNsmqursm‘?thc’s‘f’NlCOs( 7‘N1ﬂ is
+ pﬁIEm ¢ sin gy + cos ¢ht cos ¢ cos (A{g - ANﬂ
- pN_IE,in ¢ SIN Gg_y + €08 By €08 Py €08 (N - hN_Iﬂ fp (56)

where ¢N—1’ AN—l’ and Py-1 are the geocentric latitude, east longitude, and geocen-
tric radius, respectively, of the point N-1. The unit vector %#J-l’ shown in figure 8,

_—
which is in the same direction as the vector N -1,N“, is

- B
N-1,N (57)

If the curvature of the reference curve S 1is small compared to the curvature of
-—>

the triangulation solution curve 8, then the total output curvature error vector »{§ in
the solution curve at the point N, due to the input curvature error Lllii, is approximately

Db Pk
- Tn-Tna g
KN—‘—_—__—'T ( )
lN'liN“!

as is seen from figure 8, The total output curvature error K{fr in the solution curve at
the point N, due to the input curvature error L#{, is

p -3
Ky = f{ﬁ (59)
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The total output curvature error can be resolved into two components, the parallel
output curvature error K’]'_LN (parallel to the local vertical tangent plane, as defined in
the previous section on slope errors) and the perpendicular output curvature error K%N
(perpendicular to the local vertical tangent plane), The perpendicular output curvature
error K%’LN and the parallel ouiput curvature error HEILN in the solution curve at the
point N, due to the input curvature error L#T, are

xi '
- KI% ) {60)

—> [ty
KON ??:

1/2
e [(4)° - ()] o)

where the unit vector EN is given by equation (27).

Now, the point n* is approximately midway between the points n-1 and n+l
along the azimuth-elevation image trace segment n-I1, n“, n+l and also the gquantity

gI%T’ which is the distance in radians between the points n and n“, is much smaller than
the input radius of curvature error rI%, as are shown in figure 7, Hence, one finds that,
to sufficient accuracy, the input radius of curvature error rfr in the azimuth-elevation

image trace segment (n-])“‘, np“, (n+1)* from the observation station p is

where (AS)I%T is the spacing in radians between the points n and n+l,
Hence, the input curvature error LN in the azimuth-elevation image {race seg-

ment {(n- 1)“ n“, (n+1}* from the observation station @ is

Zg“ ‘
- N (63)

(In computations the quantity gN may be set equal to the input displacement error eN.)

1
'N

Hence, the parallel, perpendicular, and total curvature errors, denoted by QIN’ ok ON?
and 8{&, respectively, per unit input curvature error, in the solution curve at the point N
are
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K%N
B
QIN = T (64)
N
K
H®
g 2N
Yon = e (65)
N
i
K
po_ N
oy = L“ (66)
N

Now, the parallel curvature error QFILN’ for instance, in the solution curve at the
point N is due only to the unit input curvature error in the azimuth-elevation image
trace segment (-1 0, (n+1)* from the observation station p. If a random curva-
ture error aN with zero mean exists in the segment (n- 1)}UL n*, (n+1)* from the sta-
tion p, then the parallel curvature error in the solution curve at the point N, due to the
random curvature error aN, is (BIN aN) . The random curvature errors at the various
observation stations, like both the random displacement and slope errors, are uncorre-

2
lated. If one assumes that the mean-square random curvature error (a{@ in the

azimuth-elevation image trace segment (n-i)“, n“, (n+1)“’ from each respective obser

vation station is equal to (U{La.N) radians (the mean-square curvature error in the
azimuth-elevation image trace segment (n-1)%, n* (n+1)* as given by eq. {25)), then

1/2

O1n = %(Q%N) 2 (UgN) i | (67)

is the formula for the parallel rms curvature error in the triangulation solution curve at
the point N, as related to the rms curvature errors G&N in the azimuth-elevation
image traces. Similarly, the perpendicular and totai rms curvature errors, denoted by
GZN and @N, respectively, in the triangulation solution curve at the point N, as related

to the rms curvature errors U{La_N in the azimuth-elevation image traces, are

2 /2
Oyn = Z(QELN) (GQN) (68)
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. 2.
Oy = LE(%) (oh) J (69)
CONCLUDING REMARKS

Formulas have been derived for the rms displacement, slope, and curvature errors
in an azimuth-elevation image trace of an elongated object in space, as related to the rms
elevation error in the individual input data points. Also, formulas have been derived for
the total rms displacement, slope, and curvature error vectors in the triangulation solu-
tion of an elongated object in space, as related to the rms displacement, slope, and curva-
ture errors, respectively, in the azimuth-elevation image traces. These total rms dis-
placement, slope, and curvature error vectors specify the errors in location, orientation,
and shape, respectively, in the triangulation solution of an elongated object in space.
Therefore, the errors in location, orientation, and shape in the triangulation solution of
an elongated object in space have been related to the rms elevation errors in the indi-

vidual input data points.
Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., January 23, 1974,
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Flevation (n-1M

n-1

Azimuth x cos {elevation)

Figure 1.- From observation station p, image trace segment (n—l)“, n'u, (n+1)*
differing from error-free trace segment n-1, n, n+l in location, orientation,
and shape.
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Figure 3.- In space, reference curve S, triangulation solution curve S‘u,
—>

and total output displacement error vector d{\"].



Elevation

Azimuth x cos (elevation)

Figure 4.- From observation station u, input displacement error eN
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Elevation

Azimuth x cos (elevation}

Figure 5.- From observation station p, input slope error o
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Figure 6.- In space, output slope errors 5;111\1’ B%‘N, and 6%.
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Elevation

Azimuth X cos (elevation)

Figure 7,- From observation station u, input curvature error LI'%.



e

NASA-Langley, 1974

—
Figure 8.- In space, total output curvature errotr vector HI“E
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